

Page | i

Vehicle Detection & Speed Tracking

using Image processing

A Project presented to the National University in partial fulfillment of the requirement for

The degree of Bachelor of Science (Hon’s) in Computer Science & Engineering

Supervised By

Mizanur Rahman

Lecturer (Dept. of CSE)

Daffodil Institute of IT

Submitted By

Mehedi Hasan Nayem

Registration no: 17502005087

Session: 2017-2018

Department of Computer Science & Engineering

Daffodil Institute of IT, Dhaka

Under National University, Bangladesh

September, 2023

Page | ii

DECLARATION

We pledge that the project work titled “Vehicle Detection & Speed Tracking using Image

Processin” being submitted in partial fulfillment for the degree of B.Sc. (Hon’s) in Computer

Science & Engineering is the original work carried out by me. It has not formed the part of any

other project work submitted for any degree or diploma, either in this or any other University.

Submitted by :

Mehedi Hasan Nayem

Registration no: 17502005087

Session: 2017-2018

Page | iii

APPROVAL

The Project “Vehicle Detection & Speed Tracking using Image Processing” is

submitted to the Department of Computer Science & Engineering, DIIT under National

University of Bangladesh in absolute fulfillment of the requirements for the degree of

Bachelor of Science (Hon’s) in Computer Science and Engineering and approved as to its

style and content.

 Examiner

Project Supervisor

 Mizanur Rahman

Lecturer (Dept. of CSE)

Daffodil Institute of IT

 Examiner

 Md. Imran Hossain

Head

Department of CSE

Daffodil Institute of IT

Page | iv

ACKNOWLEDGEMENTS

I would like to express my profound gratitude to Almighty Allah. With the

blessing of Almighty Allah, I have successfully planned my project.

My sincere thanks to Prof. Dr. Mohammed Shakhawat Hossain, Principal of DIIT who

has allowed me to do this project and encouragement given to me.

I express my gratitude to our supervisor Mizanur Rahman, Lecturer, DIIT, Dhaka, for

having provided us the facilities to do the project successfully.Also, thanks for his valuable

guidance and support to meet the successful completion of my project.

My heartiest thanks Md. Imran Hossain, Head of Department, Computer Science &

Engineering, DIIT, Dhaka, for his patronage and giving me an opportunity to undertake

this Project.

I express my gratitude to Our Batch Co-ordinator Saidur Rahman, Senior Lecturer, DIIT,

Dhaka, for having provided us the facilities to do the project successfully.

I express my gratitude to Poly Bhoumik, Senior Lecturer, DIIT, Dhaka, for having

provided us the facilities to do the project successfully.

I express my gratitude to Nusrhat Jahan Sarkar, Lecturer, DIIT, Dhaka, for having

provided us the facilities to do the project successfully.

Last but not the least, I extend my sincere thanks to my family members and my friends

for their constant support throughout this project.

Page | v

ABSTRACT

The Vehicle Detection & Speed Detection Project is a computer vision project that involves

detecting and tracking vehicles in real-time from a video feed or CC Tv Camera. The

project utilizes deep learning algorithms, such as Convolutional Neural Networks (CNNs),

Object Tracking etc to detect the presence of vehicles in a frame and to locate their position.

Once the vehicles are detected, the project tracks their movement over time to estimate

their speed and direction. The ultimate goal of the project is to provide accurate and reliable

vehicle detection and tracking for use in various applications, such as traffic management,

surveillance, and autonomous driving systems.

The vehicle detection project aims to develop a system that can automatically detect and

track vehicles in real-time using computer vision and machine learning techniques. The

system employs a combination of object detection algorithms, such as YOLO, SSD, or

Faster R-CNN, and image processing techniques, such as edge detection, segmentation,

and feature extraction, to identify and track vehicles in a video stream. The system can also

perform various tasks, such as vehicle classification, counting, and speed estimation, to

provide useful information for traffic management and surveillance applications. The

project requires extensive data collection and preprocessing, as well as model training and

optimization, to achieve high accuracy and real-time performance.

Page | vi

TABLE OF CONTENTS

TITLE PAGE ……………………………………………………………………..……i

PROJECT PROPOSAL ………………………………………….……………….........ii

DECLARATION……………………………………………………….………..……..iii

ACKNOWLEDGEMENTS ……………………………………………………...…….iv

ABSTRACT……………………………………………………...…...………...………v

CHAPTER 1: INTRODUCTION 1

1.1 Introduction……………………………………………...……………...………….1

1.2 Objective………………………………………………………...……....…………2

1.3 Benefits …………………………………………………….....................................3

1.4 Limitation……..……..4

1.5 Features….…………………..……………………….....................................……..5

CHAPTER 2: BACKGROUND STUDY 6

2.1 Introduction to background processing……… ………………………...………......7

2.2 Feasibility…………………………………………………………………..….……8

2.3 Applicability of our system ……………………………….......................................9

CHAPTER 3: LITERATURE REVIEW 10

3.1 Introduction to literature survey…………………...…………………………..…..11

3.2 Background subtraction methods………………………………………....……….12

3.3 Feature based methos………………………………………...................................14

3.4 Frame differencing and motion-based method...13

3.5 Camera calibration approch…………………….....................................…........…13

3.6 Vehicle traking approaches…………………………………….....………….…....14

3.6.1 Region-based tracking methods……………………………….……………...…15

3.6.2 Contour tracking methods………………………………….……………...….…15

3.6.3 3D model-based tracking methods……………………….….…………………..15

Page | vii

CHAPTER 4: REQUIREMENT 16

4.1 Introduction to requirements……..…………………...…………………………..17

4.2 Hardware requirements……………………………………………...……………17

4.3 Python and PIP……………………………………..17

4.4 OpenCV..18

4.5 TensorFlow…………..………………………..………...18

4.6 TensorFlow object detection API………………………………………………...19

CHAPTER 5: DESIGN OF THE SYSTEM 20

5.1 System architecture…………………………...………………………………..…21

5.2 Workflow for processing input…………………………………………………...22

5.3 Block Diagram of Vehicle Detection……………………………………………..23

5.5 Tracker………………………………..23

5.6 Model ..……...24

5.5 Multi-object tracking Diagram.………………………................................……..25

CHAPTER 6: IMPLEMENTATION 26

6.1 Vehicle Detection...…………………………...………………………………..…27

6.2 DataBase connection....……….…………………………………………………...35

6.3 Screenshot of Project……………….……………………………………………..36

6.4 Screenshot of DataBase connections…………….....……………………………..37

6.5 Web-App view…....…………………………...………………………………..…38

CHAPTER 6: CONCLUSION AND RECOMMENDATION 39

6.1 Conclusion …………………………...………………………………………..…40

REFERANCE 41

Page | viii

SL

1

2

3

4

5

6

7

8

9

10

11

12

13

Figure Name

Background Subtraction Methods

Camera Calibration Approacehs

System Architecture

Workflow Diagram

Block Diagram

Tracker

Model

Multi-Object Tracking

Source Video 1

Output Video 1

DataSet

Login Page

Index page

Page No

12

14

21

22

23

24

24

25

26

36

37

38

38

Page 1 of 40

CHAPTER 1

INTRODUCTION

Page 2 of 40

CHAPTER 1 : INTRODUCTION

1.1 Introduction :

Detection of vehicle and tracking of speed if the crucial part of town planning. One of the

significant applications of video-based supervision systems is the traffic surveillance. So,

for many years the researches have investigated in the Vision-Based Intelligent

Transportation System (ITS), transportation planning and traffic engineering applications

to extract useful and precise traffic information for traffic image analysis and traffic flow

control like vehicle count, vehicle trajectory, vehicle tracking, vehicle flow, vehicle

classification, traffic density, vehicle velocity, traffic lane changes, license plate

recognition, etc. Vehicle speed detection system finds the speed of the vehicle accurately

and helps to discover, if any vehicle is moving with the speed greater than the speed limit

in real time [10]. It can also be used to generate e-challan. It is cost effective and can be

used 24*7. The main concern of the authority dedicated to the road safety is vehicle speed

control. This is the important reason to control speed of the vehicles to save the lives of

people. There are various application areas of this system like public road safety agencies,

private road safety department, government. The first priority of most of the government

all over the world is road safety. To overcome this problem and to decrease the death rate

due to road accident the development of new traffic enforcement is required. This system

captured the image of the vehicle and find the speed of the vehicle.

Page 3 of 40

1.2 Objective :

Vehicle detection and tracking applications play an important role for civilian and military

applications such as in highway traffic surveillance control, management and urban traffic

planning. Vehicle detection process on road are used for vehicle tracking, counts, average

speed of each individual vehicle, traffic analysis and vehicle categorizing objectives and

may be implemented under different environments changes. In this review, we present a

concise overview of image processing methods and analysis tools which used in building

these previous mentioned applications that involved developing traffic surveillance

systems. More precisely and in contrast with other reviews, we classified the processing

methods under three categories for more clarification to explain the traffic systems.

1.3 Benefits :

There are several benefits of a vehicle detection project that can be used for traffic

monitoring, safety applications, and more. Here are some potential benefits:

 Improved traffic flow: By monitoring the number of vehicles on the road and their

speed, a vehicle detection system can help improve traffic flow by identifying

areas where congestion is likely to occur and suggesting alternate routes or traffic

management strategies.

 Enhanced safety: A vehicle detection system can help improve safety on the roads

by detecting vehicles that are speeding or driving recklessly, and alerting law

enforcement or other authorities to take action.

 Reduced fuel consumption: By optimizing traffic flow and reducing congestion,

a vehicle detection system can help reduce fuel consumption and emissions,

which can be beneficial for the environment.

 Cost savings: A vehicle detection system can help reduce the cost of traffic

management by providing real-time data on traffic conditions, allowing

authorities to allocate resources more efficiently and reduce unnecessary

expenditures.

Page 4 of 40

 Improved emergency response: In the event of an accident or other emergency,

a vehicle detection system can help emergency responders by providing real-

time data on traffic conditions and the location of vehicles, allowing them to

respond more quickly and effectively.

Overall, a vehicle detection project has the potential to provide significant benefits for

traffic management, safety, and the environment, making it a valuable tool for

transportation authorities and other organizations.

1.4 Limitation :

There are several limitations of a vehicle detection project that should be considered. Here

are some potential limitations:

 Limited accuracy: The accuracy of a vehicle detection system may be affected by

various factors such as lighting conditions, weather, and camera positioning, which

can impact the ability of the system to accurately detect and track vehicles.

 Limited coverage: The coverage of a vehicle detection system may be limited by

the placement of cameras or sensors, which can impact the ability of the system to

detect and track vehicles in certain areas.

 Limited functionality: A vehicle detection system may be designed to detect and

track vehicles, but may not have additional functionality such as recognizing

license plates, identifying specific types of vehicles, or detecting pedestrians or

cyclists, rickshaw.

1.5 Features :

A vehicle detection and speed tracking project can have several features, depending on the

specific requirements and goals of the project. Here are some possible features:

 Real-time detection and tracking of vehicles: The system can detect and track

vehicles in real-time using computer vision techniques, such as object detection and

tracking.

 Vehicle speed calculation: The system can calculate the speed of each vehicle by

analyzing its position across multiple frames.

 Speed threshold detection: The system can be configured to trigger an alert if a

vehicle exceeds a specified speed limit.

Page 5 of 40

 Multiple camera support: The system can support multiple cameras to cover larger

areas and capture more data.

 User interface: The system can have a user interface to allow users to view real-

time data and generate reports.

 Data storage and retrieval: The system can store data on vehicle positions and

speeds, allowing it to generate reports and perform analysis.

 Integration with other systems: The system can be integrated with other systems,

such as traffic management systems or emergency response systems.

 Customization: The system can be customized to meet specific requirements and

goals, such as detecting specific types of vehicles or monitoring specific areas of

interest.

Overall, a vehicle detection and speed tracking project can have several features that make

it a valuable tool for traffic management, safety, and other applications. The specific

features will depend on the requirements of the project and the needs of the users.

Page 6 of 40

CHAPTER 2

BACKGROUND STUDY

Page 7 of 40

CHAPTER 2 : BACKGROUND STUDY

2.1 Introduction to Background Processing :

In this project, we have used the methods discussed in Dimililer et al. (2020) paper of

Vehicle detection and tracking to built a system using OpenCV and Python for both images

and videos that is able to detect and track the vehicles automatically. We have used a

dataset consisting of 8792 vehicle images and 8968 non-vehicle images from a

combination of the GTI vehicle image database and the KITTI vision benchmark suite. We

have utilized Histogram of Oriented Gradients (HOG) feature extraction on a labelled

training set and trained one of Support vector machines (SVMs) classifier.

We have implemented a sliding-window technique and used the trained classifier to search

for vehicles in images. From the object detection result, we have assigned an object tracker,

the tracker would be following the target by re-detecting it in the sequence frame following

the first point of the target. The identification of vehicles is shown by drawing a bounding

box around it.

2.2 Feasibility :

Vehicle detection using computer vision techniques such as object detection and tracking

is a well-established field, and there are many commercially available systems that can

accurately detect and track vehicles. Therefore, it is feasible to implement a vehicle

detection project.

However, the feasibility of a vehicle detection project will depend on several factors such

as the specific requirements of the project, the available resources (including budget and

personnel), and the infrastructure in the area where the system will be deployed.

For example, the accuracy of a vehicle detection system can be affected by lighting

conditions, weather, and camera positioning. Therefore, it may be necessary to carefully

consider these factors during the design and implementation of the system.

Page 8 of 40

2.3 Applicability of Our System :

A vehicle detection project can have a wide range of practical applications in various

industries. Here are some examples of how a vehicle detection project can be applied:

 Traffic management: A vehicle detection project can be used to monitor traffic

flow, detect congestion, and optimize traffic signals.

 Safety and security: A vehicle detection project can be used to detect vehicles in

restricted areas, monitor vehicle speeds and behaviors, and detect accidents or

incidents.

 Parking management: A vehicle detection project can be used to monitor parking

spaces and provide real-time information about available parking spots.

 Logistics and transportation: A vehicle detection project can be used to track the

movement of vehicles, monitor cargo, and optimize delivery routes.

 Environmental monitoring: A vehicle detection project can be used to monitor

emissions from vehicles and identify areas of high pollution.

 Autonomous vehicles: A vehicle detection project can be used as part of an

autonomous driving system to detect and track other vehicles on the road.

Overall, a vehicle detection project can have numerous practical applications in various

industries, and its applicability will depend on the specific requirements and goals of the

project.

Page 9 of 40

CHAPTER 3

LITERATURE REVIEW

Page 10 of 40

CHAPTER 3 : LITERATURE REVIEW

3.1 Introduction to Literature Survey :

Recognition of change in location of a non-stationary object in a series of images captured

of a definite region at equal intervals of time is considered as an interesting topic in

computer vision. A plethora of application from multiple nuances are deployed to function

in real time environments; video surveillance, identifying objects lying underwater,

diagnosing abnormalities in patient and providing proper treatment in the medical

department. Among these, one of the applications is detection of vehicle in traffic and

identifying the speed of the vehicle.

However, there are certain factors which should be considered for detection of constantly

moving vehicles at every interval of time. It mainly comprises of three techniques to detect

a vehicle namely:

1) Background Subtraction Methods

2) Feature Based Methods

3) Frame Differencing and motion-based methods

3.2 Background Subtraction Methods

The method of retrieval of a mobile object from a definite image (fixed background) is

called background subtraction and the retrieved object is the resulted as threshold of image

differencing [1]. This technique is pre dominantly used in detection of vehicle in an image

frame. However the results are affected in poor lighting or bad climatic conditions and acts

as a drawback to this method. BS calculates the foreground mask performing a subtraction

between the current frame and a background model, containing the static part of the scene

Page 11 of 40

or, more in general, everything that can be considered as background given the

characteristics of the observed scene.

3.3 Feature Based Methods

This technique of identifying image displacements which are easiest to interpret is feature

based modelling. The technique helps in identifying edges, corners and other structures in

an image which are restricted properly in a two-dimensional plane and trace these objects

as they transit between multiple frames. This technique comprises of two stages; finding

the features in multiple images and matching these features between the frames: Stage 1:

In this step, the features are found in a series of two or more images. If carried out perfectly,

with no overhead cost; it may work efficiently with less overload and reduce the extraneous

information to be processed Stage 2: Features found in stage 1 are matched between the

frames. Under most common scenarios, two frames are used and two sets of features are

matched to a resultant single set of motion vectors. These features in one frame are used as

seed points which use other techniques to determine the flow.

Figure 1 : Background Subtraction Methods

Page 12 of 40

3.4 Frame Differencing & Motion-based Methods :

Frame differencing is a method of finding the difference between two consecutive images

from a sequence of images to segregate the moving object (vehicle) from the background.

If there is a change in pixel values, it implies that there was a change in position in the two

image frames.The motion rectification step of detecting a vehicle in a trail of images by

alienating the moving objects, also known as blobs based on its speed, movement and

orientation.It is recommended to use an intraframe, interframe and tracking levels as

frameworks to identify and control the motion of vehicles in frame. Using quantitative

evaluation this paper illustrated that interframe and intraframe can be used to control and

handle partially detected images and tracking level can be used to handle full blocked

images efficient.

3.5 Camera Calibration Approacehs

Measuring the vehicle speed and precision of vehicle tracking methods rely on well camera

calibration performance, and the camera calibration setup may be done in semi-

automatically matter or by hand. Camera calibration is a vital procedure for well video-

based surveillance systems.

A new automatic method for segmenting and tracking vehicles applied on a video taken by

camera at low angle level relatively to the ground on highway road [3]. In this paper,

expectation of high features is calculated by joining of region-based grouping procedure,

background subtraction, projective transformation and using of plumb line projection

(PLP).

A novel automatic traffic system which uses 2D spatio-temporal images has suggested by

[6]. This system uses a TV camera to keep track of vehicles for the highway traffic within

two slice windows for each traffic lane. The purpose of this system was classifying the

passing vehicles by using these 3D measurements (height, width and length) in addition to

count the vehicles and assessment their speeds. Also, this system showed a robust

Page 13 of 40

performance when it tested under different light situations involving vehicles lights at night

and shades in the day (Figure 2).

3.6 Vehicle Tracking Approaches :

The object tracking in video processing is an important step to tracking the moving objects

in visual-based surveillance systems and represents a challenging task for researchers [43].

To track the physical appearance of moving objects such as the vehicles and identify it in

dynamic scene, it has to locate the position, estimate the motion of these blobs and follow

these movements between two of consecutive frames in video scene [44]. Several vehicle

tracking methods have been illustrated and proposed by several researchers for different

issues, it consists of:

1. Region-Based Tracking Methods

2. Contour Tracking Methods

3. 3D Model-Based Tracking Methods

Figure 2 : Camera Calibration Approaches

Page 14 of 40

3.6.1 Region-Based Tracking Methods

In these methods, the regions of the moving objects (blobs) are tracked and used for

tracking the vehicles. These regions are segmented from the subtracting process between

the input frame image and prior stored background image. A proposed research paper

introduced a model-based automobile recognizing, tracking and classification which is

efficiently working under most conditions [17]. The model provided position and speed

knowledge for each vehicle as long as it is visible, in addition, this model worked on series

of traffic scenes recorded by a stable camera for automobiles monocular images. The

processing algorithms of this model represented of three levels: raw images, region level,

and vehicle level.

3.6.2 Contour Tracking Methods

These methods depend on contours (the boundaries of vehicle) of vehicle in tracking

vehicle process [39]. The authors [46]have proposed a novel real time traffic supervision

approach which employs optical movement and uncalibrated camera parameter knowledge

to detect a vehicle pose in the 3D world. In this paper, the proposed approach uses two new

techniques: color contour based matching and gradient based matching, and it showed well

results when it tested for tracking, foreground object detection, vehicle recognition and

vehicle speed assessment methods. A real-time vehicles tracking and classification

technique on highway have offered by [8]. A few traffic criterions (lane change

recognition, vehicle numbering and vehicle classification) are extracted by above

technique. In addition, the proposed technique supported the occlusion detection and

tracking which caused from multiple vehicles poses in the crowding situation.

3.6.3 3D Model-Based Tracking Methods

An occlusion detection approach based on generalized deformable model. In this paper,

the occlusion of vehicles detection process used a 3D solid cuboid form with up to six

vertices, and this cuboid used to fit any different types and sizes of vehicle images by

changing the vertices for a best fit. Therefore, vehicle detection, segmentation and tracking

can be achieved efficiently due to changes in the region proportion, prototype width and

height with consideration to previous images. A unified multi-vehicle tracking and

categorization system for various types of vehicles such as motorcycles, cars, light trucks

and heavy trucks on highway and windy road video sequences has recommended by [48].

In this paper, a vehicle anisotropic distance measurement achieved through the 3D

geometric shape of vehicles.

Page 15 of 40

Chapter 4

REQUIREMENTS

Page 16 of 40

CHAPTER 4 : REQUIREMENTS

4.1 Introduction to Requirements

The process to gather the software requirements from clients and analyze and

document them is known as requirement engineering. The goal of requirement

engineering is to develop and maintain a sophisticated and descriptive ‘System

Requirements Specification’ document.

4.1.1 Hardware Requirements

 Intel Core i5

 8GB RAM

 Camera

4.1.2 Software Requirements

● Pycharm powered by Jetbrains / Visual Studio

● OpenCV

● Tensorflow

● Python IDE (Python v3.10)

● Object Detection API

4.2 Python and pip

Python is a high-level, interpreted programming language that is widely used for

developing a wide range of applications, including web development, scientific computing,

artificial intelligence, data analysis, and more. The most important thing is that it is an

interpreted language which means that the written code has not been translated into a

computer-readable format at execution time whereas, the major programming languages

do this translation before the program runs. This type of language is also known as

“scripting language” because it is intended for use for little projects.

Page 17 of 40

Pip is a package manager for Python that helps you easily install, manage, and update third-

party packages and libraries that are not included in the standard Python library. It allows

you to install and manage packages from the Python Package Index (PyPI) and other

repositories.

4.3 OpenCV

OpenCV (Open Source Computer Vision) is a library of programming functions mainly

aimed at real-time computer vision. It is an open-source computer vision and machine

learning software library that provides various tools and algorithms for image and video

processing, object detection, feature extraction, and more.

OpenCV is written in C++, but it also provides bindings for various programming

languages, including Python, Java, and MATLAB. It can run on various operating systems,

including Windows, Linux, macOS, Android, and iOS. It is a powerful tool for building

and training machine learning models, particularly neural networks. TensorFlow provides

a wide range of tools and APIs for developing machine learning models.

4.4 TensorFlow

Tensor operations: TensorFlow represents data as tensors, and provides a set of operations

for manipulating them, including arithmetic operations, matrix multiplication, and more.

High-level APIs: TensorFlow provides high-level APIs for building common machine

learning models, including convolutional neural networks (CNNs), recurrent neural

networks (RNNs), and more.

Low-level APIs: TensorFlow also provides low-level APIs for building custom machine

learning models, including defining custom loss functions, creating custom layers, and

more.

GPU support: TensorFlow can run on GPUs, which can significantly speed up the training

of machine learning models.

Distributed training: TensorFlow can distribute the training of machine learning models

across multiple machines, allowing for faster training and larger models.

Page 18 of 40

4.5 TensorFlow Object Detection API:

The TensorFlow Object Detection API is a set of tools and libraries built on top of

TensorFlow that allows developers to easily build, train, and deploy object detection

models. Object detection is the task of detecting and localizing objects in an image or video,

and is a fundamental problem in computer vision.

The TensorFlow Object Detection API provides pre-trained models that can detect a wide

variety of objects, such as people, animals, vehicles, and more. It also provides tools for

training custom object detection models on new datasets, as well as tools for evaluating

and fine-tuning existing models.

Pre-trained models: The API includes several pre-trained models that can be used for

detecting objects in images or videos, including the popular SSD (Single Shot Detector)

and Faster R-CNN (Region-based Convolutional Neural Network) models.

Custom training: The API includes tools for training custom object detection models on

new datasets, which can be useful for detecting objects that are not covered by the pre-

trained models.

Data augmentation: The API includes tools for augmenting training data, such as randomly

flipping or rotating images, which can help improve the performance of the trained models.

Distributed training: The API can distribute the training of object detection models across

multiple GPUs or machines, which can significantly speed up the training process.

Page 19 of 40

CHAPTER 5
DESIGN OF THE

SYSTEM

Page 20 of 40

CHAPTER 5 : DESIGN OF THE SYSTEM

5.1 System Architecture :

 Vehicle detection and classification have been developed using TensorFlow Object

Detection API, see for more info.

 Vehicle speed prediction has been developed using OpenCV via image pixel

manipulation and calculation, see for more info.

 Vehicle color prediction has been developed using OpenCV via K-Nearest

Neighbors Machine Learning Classification Algorithm is Trained Color Histogram

Features, see for more info.

Figure 3 : System Architecture

Page 21 of 40

5.2 Workflow for Processing Input:

Figure 4 : Workflow Diagram

Page 22 of 40

5.3 Block Diagram of Vehicle Detection :

Figure 5 : Block Diagram

Page 23 of 40

5.4 Tracker

Source video is read frame by frame with OpenCV. Each frames is processed by "SSD

with Mobilenet" model is developed on TensorFlow. This is a loop that continue

working till reaching end of the video. The main pipeline of the tracker is given at the

above Figure.

Figure 6 : Tracker

5.5 Model

By default we use an "SSD with Mobilenet" model in this project. You can find more

information about SSD in here. See the detection model zoo for a list of other models

that can be run out-of-the-box with varying speeds and accuracies.

Figure 7 : Model

SSD MobileNet is a real-time object detection model that combines the Single Shot

Detector (SSD) architecture with a MobileNet neural network. The model is designed

to be lightweight and efficient, making it well-suited for deployment on mobile devices

Page 24 of 40

and embedded systems.The SSD architecture is a type of object detection model that

can detect objects in an image with a single forward pass through a neural network. It

does this by predicting a set of bounding boxes and class probabilities for each anchor

point in the image, and then using non-maximum suppression to remove overlapping

detections.

5.6 Multi-Object Tracking Diagram

Multi-object tracking is a computer vision technique used to track multiple objects

simultaneously in a video or image sequence. The goal is to identify and track objects of

interest over time, while maintaining the identity of each object and estimating its position,

velocity, and other properties.

Figure 8 : Multi-Object Tracking

Page 25 of 40

CHAPTER 6

IMPLEMENTATION

Page 26 of 40

CHAPTER 6 : IMPLEMENTATION

6.1 Input Video

Source Video 1

Output Result 1

6.2 Output Video

Page 27 of 40

6.3 Data Base connections

9. Dataset

Page 28 of 40

6.4 Web-App view

10. Login Page

11. Index page

Page 29 of 40

CHAPTER 7

CONCLUSION AND

RECOMMENDATION

Page 30 of 40

CHAPTER 7 : CONCLUSION AND

RECOMMENDATION

This project provides a summarizing study on the proposed techniques which have used in

traffic video. It focuses in these areas, namely vehicle detection, tracking, and classification

with appearance of shadow and partial occlusion. Also, we present and classify the traffic

surveillance systems to three types based on specific methods which used for developing

it. These types shows the detailed information about how the traffic surveillance systems

used the image processing methods and analysis tools for detect, segment, and track the

vehicles. In addition, shadow and partial occlusion matters and its available solutions are

discussed. More specifically, this review gives better understanding and highlights the

issues and its solutions for traffic surveillance systems.

Page 31 of 40

Appendix

 vehicle_detection_main.py

tf.disable_v2_behavior()

import zipfile

import cv2

import numpy as np

import csv

import pymongo

import uuid

import time

import base64

from packaging import version

from collections import defaultdict

from io import StringIO

from matplotlib import pyplot as plt

from PIL import Image

Object detection imports

from utils import label_map_util

from utils import visualization_utils as vis_util

from database import mongo

SPEED_LIMIT = 60

client = mongo.db_connect();

initialize .csv

with open('traffic_measurement.csv', 'w') as f:

 writer = csv.writer(f)

 csv_line = \

 'Vehicle Type/Size, Vehicle Color, Vehicle Movement Direction, Vehicle

Speed (km/h)'

 writer.writerows([csv_line.split(',')])

input video

source_video = 'input_video.mp4'

cap = cv2.VideoCapture(source_video)

Variables

height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))

width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))

fps = int(cap.get(cv2.CAP_PROP_FPS))

Page 32 of 40

total_passed_vehicle = 0 # using it to count vehicles

By default I use an "SSD with Mobilenet" model here. See the detection model

zoo

(https://github.com/tensorflow/models/blob/master/research/object_detection/g3d

oc/detection_model_zoo.md) for a list of other models that can be run out-of-the-

box with varying speeds and accuracies.

What model to download.

MODEL_NAME = 'ssd_mobilenet_v1_coco_2018_01_28'

MODEL_FILE = MODEL_NAME + '.tar.gz'

DOWNLOAD_BASE = \

 'http://download.tensorflow.org/models/object_detection/'

Path to frozen detection graph. This is the actual model that is used for the

object detection.

PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'

List of the strings that is used to add correct label for each box.

PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')

NUM_CLASSES = 90

Download Model

uncomment if you have not download the model yet

Load a (frozen) Tensorflow model into memory.

detection_graph = tf.Graph()

with detection_graph.as_default():

 od_graph_def = tf.compat.v1.GraphDef()

 with tf.compat.v2.io.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:

 # od_graph_def = tf.compat.v1.GraphDef() # use this line to run it with

TensorFlow version 2.x

 # with tf.compat.v2.io.gfile.GFile(PATH_TO_CKPT, 'rb') as fid: # use this

line to run it with TensorFlow version 2.x

 serialized_graph = fid.read()

 od_graph_def.ParseFromString(serialized_graph)

 tf.import_graph_def(od_graph_def, name='')

Loading label map

Label maps map indices to category names, so that when our convolution

network predicts 5, we know that this corresponds to airplane. Here I use internal

utility functions, but anything that returns a dictionary mapping integers to

appropriate string labels would be fine

Page 33 of 40

label_map = label_map_util.load_labelmap(PATH_TO_LABELS)

categories = label_map_util.convert_label_map_to_categories(label_map,

 max_num_classes=NUM_CLASSES,

use_display_name=True)

category_index = label_map_util.create_category_index(categories)

Helper code

def load_image_into_numpy_array(image):

 (im_width, im_height) = image.size

 return np.array(image.getdata()).reshape((im_height, im_width,

 3)).astype(np.uint8)

Detection

def object_detection_function(command):

 total_passed_vehicle = 0

 speed = 'waiting...'

 direction = 'waiting...'

 size = 'waiting...'

 color = 'waiting...'

 if (command == "imwrite"):

 fourcc = cv2.VideoWriter_fourcc(*'XVID')

 output_movie = cv2.VideoWriter(source_video.split(".")[0] + '_output.avi',

fourcc, fps, (width, height))

 with detection_graph.as_default():

 with tf.compat.v1.Session(graph=detection_graph) as sess:

 # with tf.compat.v1.Session(graph=detection_graph) as sess: # use this

line to run it with TensorFlow version 2.x

 # Definite input and output Tensors for detection_graph

 image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')

 # Each box represents a part of the image where a particular object was

detected.

 detection_boxes =

detection_graph.get_tensor_by_name('detection_boxes:0')

 # Each score represent how level of confidence for each of the objects.

 # Score is shown on the result image, together with the class label.

 detection_scores =

Page 34 of 40

detection_graph.get_tensor_by_name('detection_scores:0')

 detection_classes =

detection_graph.get_tensor_by_name('detection_classes:0')

 num_detections =

detection_graph.get_tensor_by_name('num_detections:0')

 # for all the frames that are extracted from input video

 while cap.isOpened():

 (ret, frame) = cap.read()

 if not ret:

 print('end of the video file...')

 break

 input_frame = frame

 # Expand dimensions since the model expects images to have shape:

[1, None, None, 3]

 image_np_expanded = np.expand_dims(input_frame, axis=0)

 # Actual detection.

 (boxes, scores, classes, num) = \

 sess.run([detection_boxes, detection_scores,

 detection_classes, num_detections],

 feed_dict={image_tensor: image_np_expanded})

 # Visualization of the results of a detection.

 (counter, csv_line) = \

 vis_util.visualize_boxes_and_labels_on_image_array(

 cap.get(1),

 input_frame,

 np.squeeze(boxes),

 np.squeeze(classes).astype(np.int32),

 np.squeeze(scores),

 category_index,

 use_normalized_coordinates=True,

 line_thickness=4,

)

 total_passed_vehicle = total_passed_vehicle + counter

 # insert information text to video frame

 font = cv2.FONT_HERSHEY_SIMPLEX

Page 35 of 40

 cv2.putText(

 input_frame,

 'Detected Vehicles: ' + str(total_passed_vehicle),

 (10, 35),

 font,

 0.8,

 (0, 0xFF, 0xFF),

 2,

 cv2.FONT_HERSHEY_SIMPLEX,

)

 # when the vehicle passed over line and counted, make the color of

ROI line green

 if counter == 1:

 cv2.line(input_frame, (0, 300), (640, 300), (0, 0xFF, 0), 5)

 else:

 cv2.line(input_frame, (0, 300), (640, 300), (0, 0, 0xFF), 5)

 # insert information text to video frame

 cv2.rectangle(input_frame, (10, 275), (230, 337), (180, 132, 109), -1)

 cv2.putText(

 input_frame,

 'ROI Line',

 (545, 190),

 font,

 0.6,

 (0, 0, 0xFF),

 2,

 cv2.LINE_AA,

)

 cv2.putText(

 input_frame,

 'LAST PASSED VEHICLE INFO',

 (11, 290),

 font,

 0.5,

 (0xFF, 0xFF, 0xFF),

 1,

 cv2.FONT_HERSHEY_SIMPLEX,

)

 cv2.putText(

 input_frame,

 '-Movement Direction: ' + direction,

Page 36 of 40

 (14, 302),

 font,

 0.4,

 (0xFF, 0xFF, 0xFF),

 1,

 cv2.FONT_HERSHEY_COMPLEX_SMALL,

)

 cv2.putText(

 input_frame,

 '-Speed(km/h): ' + str(speed).split(".")[0],

 (14, 312),

 font,

 0.4,

 (0xFF, 0xFF, 0xFF),

 1,

 cv2.FONT_HERSHEY_COMPLEX_SMALL,

)

 cv2.putText(

 input_frame,

 '-Color: ' + color,

 (14, 322),

 font,

 0.4,

 (0xFF, 0xFF, 0xFF),

 1,

 cv2.FONT_HERSHEY_COMPLEX_SMALL,

)

 cv2.putText(

 input_frame,

 '-Vehicle Size/Type: ' + size,

 (14, 332),

 font,

 0.4,

 (0xFF, 0xFF, 0xFF),

 1,

 cv2.FONT_HERSHEY_COMPLEX_SMALL,

)

 if (command == "imshow"):

 cv2.imshow('vehicle detection', input_frame)

 if cv2.waitKey(1) & 0xFF == ord('q'):

 break

Page 37 of 40

 elif (command == "imwrite"):

 output_movie.write(input_frame)

 print("writing frame...")

 if csv_line != 'not_available':

 try:

 speed_data = round(float(speed), 2)

 violate_speed = True if float(speed) > SPEED_LIMIT else False

 image = base64.b64encode(input_frame) if float(speed) >

SPEED_LIMIT else None

 except:

 speed_data = None

 violate_speed = None

 image = None

 if (size != 'waiting...'):

 vehicle_data = {

 "resource_id": uuid.uuid4().hex,

 "serial": total_passed_vehicle,

 "created_time": time.strftime("%b %d %Y %H:%M:%S",

time.gmtime()),

 "type": size,

 "color": color,

 "direction": direction,

 "speed": speed_data,

 "violate_speed": violate_speed,

 "image": image

 }

 mongo.insert_one(client, vehicle_data)

 with open('traffic_measurement.csv', 'a') as f:

 writer = csv.writer(f)

 (size, color, direction, speed) = \

 csv_line.split(',')

 writer.writerows([csv_line.split(',')])

 cap.release()

 cv2.destroyAllWindows()

import argparse

Parse command line arguments

parser = argparse.ArgumentParser(description='Vehicle Detection TensorFlow.')

Page 38 of 40

parser.add_argument("command",

 metavar="<command>",

 help="'imshow' or 'imwrite'")

args = parser.parse_args()

object_detection_function(args.command)

Page 39 of 40

 Data Base Connect

 mongo.py

import pymongo

db = 'vehicle_detection'

col = 'vehicle_data'

def db_connect():

 connection_url = 'mongodb://localhost:27017'

 client = pymongo.MongoClient(connection_url)

 return client

def insert_one(client, data):

 vehicle_db = client[db]

 collection = vehicle_db[col]

 collection.insert_one(data)

 print('data inserted')

Page 40 of 40

REFERENCES

1 Raad Ahmed Hadi1,Ghazali Sulong and Loay Edwar George, Vehicle
detection and tracking techniques :A concise review, in Signal & Image
Processing (An International Journal (SIPIJ) Vol.5, No.1) February 2014.

2 Z. Wei, et al., "Multilevel Framework to Detect and Handle Vehicle
Occlusion," (Intelligent Transportation Systems, IEEE Transactions on, vol.
9, pp. 161-174) 2008.

3 Nishu Singla,Motion Detection Based on Frame Difference Method,

International Journal of Information & Computation Technology. (ISSN
0974-2239 Volume 4) Number 15, 2014

4 B. Suresh, K. Triveni Y. V. Lakshmi, P. Saritha, K. Sriharsha, D. Srinivas
Reddy, Determination of Moving Vehicle Speed using Image Processing,
(International Journal of Engineering Research & Technology (IJERT) ISSN:
2278-0181 Published by, www.ijert.org NCACSPV Conference
Proceedings)– 2016 .

5 Genyuan Cheng, Yubin Guo, Xiaochun Cheng, Dongliang Wang, Jiandong

Zhao,Real-Time Detection of vehicle speed based on video image12th
International Conference on Measuring Technology and Mechatronics
Automation (ICMTMA), 2020

6 Jin-xiang Wang, Research of vehicle speed detection algorithm in video
surveillance, IIP Lab. Department of Computer Science and Technology,
Yanbian University, Yanji, Jilin, China – 2017.

7 Pranith Kumar Thadagoppula, Vikas Upadhyaya,Speed Detection using

Image Processing, (International Conference on Computer, Control,
Informatics) 2016.

